Comparative analysis of mean platelet volume among female volleyball rugby players and yoga practitioners

Dilpreet Kaur1ABCD, Arvind Malik2BCD, Karuppasamy Govindasamy3ABCD, Saran KS4BCD, Mithin Anand5BCD, Chandrababu Suresh6BCD, John Bosco Anitha6ABCD, Mou Pramanik7ABCD, Inmen Achouri8BCD, Hiba Boughanmi8BCD, Sigamani Jayasingh Albert Chandrasekar3ACD.

1Department of Physical Education, Chandigarh University, Gharuan, 140413, Mohali, Punjab, India.
2Department of Physical Education, Kurukshetra University, Haryana, India.
3Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur-603203., Tamilnadu, India.
4Department of Physical Education, C.K.G.Memorial Govt. College, Perambra, Calicut, Kerala, India.
5Govt. College of Physical Education, East Hill, Calicut, Kerala, India.
6Department of Statistics and Computer Application, TamilNadu Physical Education and Sports University, Chennai, Tamil Nadu, India.
7Department of Yoga, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India.
8Department of Physical Education & Sports Science, Higher Institute of Sport and Physical Education, University of Sfax, Sfax, 3000, Tunisia.

Authors’ Contribution: A – Study design; B – Data collection; C – Statistical Analysis; D –Manuscript Preparation; E – Funds Collection

DOI: https://doi.org/10.34142/HSR.2022.08.03.04

Corresponding author: Karuppasamy Govindasamy, gowthamadnvog@gmail.com, https://orcid.org/0000-0002-3019-5545, Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur-603 203, Tamilnadu, India.

How to Cite

Abstract

Purpose. Several studies have shown that platelet size is a reliable indicator of platelet activity and, therefore, a valuable biomarker for cardiovascular events. Many inflammatory and prothrombotic disorders have been linked to it. As a biomarker for inflammation and neoplastic disease, this study aims to examine existing research on changes to mean platelet volume (MPV).

Materials and methods. The present study portrays MPV comparison among the female players who participated in two games and one yoga practitioners, Volleyball, and Rugby conducted at the university level throughout India with age groups ranging from 17 to 25 years in the sample. The sample size is 45, with 15 players chosen from each two game Volleyball, and Rugby and one yoga practitioners.

Results: The results mean, standard deviation (SD), standard error of the mean (SEM), and lowest and maximum scores were used to examine the data. Normality was assessed and confirmed using the Kolmogorov-Smirnov test. SPSS software was used to do the One-Way Analysis of variance. It was observed that there is a significant difference in the MPV of players from two distinct sports players and yoga practitioners. Furthermore, there exists a one-to-one correspondence between the MPV between the players participating in individual games. The present results displayed the values of MPV among players from different games and yoga practitioners are independent of one another and unaffected by one another. The p-value is 0.011252. The result is significant at p < 0.05. As a result, the null hypothesis is rejected in this study.

Conclusion. The study’s findings indicate a significant difference in the MPV of players from two distinct sports players and yoga practitioners. However, when MPV of Volleyball and rugby players were compared, it was discovered that they were connected. In conclusion, MPV among players from different games yoga practitioners are independent of one another and unaffected by one another. Variability in MPV was also observed across all sample sizes in the study.

Keywords: mean platelet volume (MPV), yoga practitioners, volleyball, rugby, female players.
Анотація

Дилпріт Каур, Арвінд Малік, Каруппасамі Говіндасами, Саран К.С., Мітхін Ананд, Чандрабабу Суреш, Джон Боско Аніта, Моу Праманік, Імен Ачурі, Хіба Боганам, Сігамани Джаясінг Альберт Чандрасекар.

Порівняльний аналіз середнього об’єму тромбоцитів у волейболісток, у регбі та йоги.

Мета. Кілька досліджень показали, що розмір тромбоцитів є надійним показником активності тромбоцитів і, отже, цінним біомаркером серцево-судинних подій. Багато запальних і протромботичних розладів були пов’язані з ним. Як біомаркер запалення та неопластичних захворювань, це дослідження має на меті вивчити існуючі дослідження змін середнього об’єму тромбоцитів (MPV).

Матеріали та методи. У цьому дослідженні представлено порівняння MPV серед жінок-гравців, які брали участь у двох іграх і одній йогі, волейболі та регбі, проведенному на університетському рівні по всій Індії з віковими групами від 17 до 25 років у вибірці. Розмір вибірки становить 45, по 15 гравців, обраніх із кожного з двох ігор у волейбол та регбі, і один практикуючий йогу.

Результати. Середнє значення результатів, стандартне відхилення (SD), стандартна помилка середнього (SEM), а також найнижчі та максимальні бали були використані для вивчення даних. Нормальность оцінювали та підтверджували за допомогою тесту Колмогорова-Смирнова. Програмне забезпечення SPSS використовувалося для виконання одностороннього дисперсійного аналізу. Було помічено, що існує значна різниця в MPV гравців двох різних спортсменів і практикуючих йогу.

Висновок. Результати дослідження вказують на значну різницю в MPV гравців від двох різних спортсменів і практикуючих йогу. Однак, коли порівняли MPV волейболісток і регбісток, було виявлено, що вони пов’язані. Підсумовуючи, MPV серед гравців з різних ігор та йоги не залежать один від одного і не впливають один на одного.

Ключові слова: середній об’єм тромбоцитів (MPV), йога, волейбол, регбі, гравці.
Introduction

Hematological parameters may be important in deciding which game participants exhibit the best physical performance. Additionally, it provides information about the players' health and physical condition. Platelet size has been shown to correlate with platelet activity and appears to be a helpful biomarker for cardiovascular events both predictive and prognostic. There are many ways that platelets contribute to atherosclerosis, including sticking to injured endothelium and releasing their granules. Regular physical activity has been found to benefit physical, physiological, and other health outcomes. Scientific research indicates that the acute and chronic impacts of frequent exercise on a variety of physiological systems are beneficial.[1] MPV is regularly evaluated in automated hematological analysers, along with other parameters, as a sign of platelet activation and/or reactivity. As a result, it could be employed as a simple and low-cost biomarker of bodily activity in a variety of additional exercise settings.[2] Ahmadizad et al. discovered that anaerobic exercise resulted in a considerable rise in platelet count.

It has been observed that high-intensity interval training enhances platelet secretion by boosting epinephrine secretion. Physical activity affects platelet function both directly and indirectly. Numerous processes and cell/tissue types are thought to contribute to the observed impacts in this area. Acute exercise increases catecholamine levels, as well as shear and oxidative stress, which are all known to activate platelets. This is particularly significant because arterial blood flow and shear rate rise in direct proportion to exercise intensity.[3] Platelets are produced under controlled, stimulated conditions. The platelet count will increase during sports due to fresh platelet release from spleen arteries, bone marrow, and other platelet sources in the body. Epinephrine release causes a severe contraction of the spleen, which contains about one-third of the body's preserved platelets. This method may help to explain why platelets are increased in sports. Additionally, in the most extreme stages of platelet activation, such increases can be generated by alterations in the development of megakaryocytic components of the cytoplasm [4][5].

While physical activity has a significant effect on a variety of laboratory markers, data on medium-distance runners are unlikely to experience hematological alterations. After completing the 21.1 km marathon, the mean platelet volume rose rapidly and returned to normal within three hours. Before the run, at the end, and three hours later, blood samples were collected. For MPV (fl), the starting volume was 9.2, the post-run value was 9.5, the volume after three hours was 9.1, and the final volume after 20 hours was 9.2. The study concluded that moderate exercise increases mean platelet volume and restore it to its pre-exercise level within three hours [6]. One Aerobic and weight training session significantly improve the mean platelet volume in non-player women (They were randomly divided into three groups of 15 subjects: two experimental groups (resistance exercise group and aerobic exercise group) and one control group. The resistance training and aerobic training were conducted in one session for 60 minutes. The blood sample was obtained before and after the activity. They observed that before the resistance exercise group mean was 9.08(fl), the post-test mean was 9.18(fl), the control group's means was 10.11(fl). This research showed that Mean Platelet Volume considerably increases with resistance type of exercise.[7] Following a light intensity circuit resistance training session, the mean platelet volume of male physical education students (35 percent of a maximum repetition) is dramatically raised. The observer discovered that MPV (fl) in the Exercise group was 9.44 0.25, 10.13 0.36 P0.73. Where 9.03 0.17, 9.53 0.38, and P-0.319 are the values for the Control group, respectively [8].

Kirbas et al. conduct a study in which they compare the blood platelet levels of players who participate in sports regularly over five years to those of inactive university students. Blood samples were taken and platelet, mean platelet volume, platelet crit, and platelet distribution width were assessed for players and sedentary university students, respectively. This study included 18 willing male players from various team sports with an average age of 20.550.70 years and 18 sedentary university students with an average age of 20.880.75 years as subjects. To determine the difference between the two groups, an independent samples 't-test was performed (P0.05) [9] During an exercise stress test, Yilmaz et al. examined MPV. The mean MPV levels before and after treadmill activity were 8.520.63 and 8.450.58, respectively, in the control and experimental groups, respectively (P0.001). Before TMET, the patient group exhibited a substantial increase in MPV (P0.001), while the control group showed no significant increase in this parameter.{10}. Erdemir et.al conducted a study to analyze the hematologic parameters of high school students who exercised in the morning and evening. Twelve healthy, untrained male students, around the age of twenty, volunteered to participate in this study.

Blood samples were collected before and following submaximal activity in the morning between 8-9 a.m., whereas blood samples were
collected before and following evening exercise between 8-9 p.m. Platelets, platelet crit, M.P.V., and P.D.W. were also measured and evaluated using an Archem H3000 Hematology Analyzer. It was revealed that there was a substantial increase in PLT and MPV levels in the morning before and after exercise, as well as in the evening before and after exercise, at a significant level of P0.05. PLT levels increased much greater in the morning pre-exercise period than in the morning post-exercise period [11]. MPV is a numerical value generated by a machine that represents the average size of platelets detected in the blood. It is frequently included in blood tests as part of the complete blood count. Since the average platelet size increases when the body produces more platelets, the MPV test result can be used to infer platelet production in the bone marrow or platelet destruction problems. The usual range of platelet volumes is 9.7-12.8 fl (femtolitre), which corresponds to spheres with a diameter of 2.65 to 2.9 m. The normal range is 7.5-11.5 fl. However, the measurement must typically be considered in conjunction with various other parameters to decide what constitutes a good range for a particular subject. Additionally, research suggests that the average healthy size of platelets may vary amongst individuals from different parts of the world.[12] Hematology analysis has established that the effect of daily exercise on hematology is variable. According to the authors, these variances are due to the severity, duration, and frequency of exercise, as well as the subjects’ physical and physiological conditions. Additionally, the intensity, duration, and frequency of exercise must be carefully planned to have a similarly excellent effect on blood biochemistry [13]. Monocytes and platelets were found to be more abundant in basketball players than in yoga practitioners, although red blood cells, neutrophils, eosinophils, basophils, and lymphocytes were comparable between groups [14].

Combination training has been shown to benefit physiological and haematological alterations, as well as the performance of elite basketball players [15]. Warlow and Ogston analyse 24 male colleagues and medical students between the ages of 20 and 35. All subjects were in good health for this study, but many were unfamiliar with intense activity. Before and after 15 minutes of intense activity, blood samples were taken. Using the spinning bulb approach, they discovered a highly significant increase in the venous platelet count without affecting platelet adhesion to glass [16]. In research on 15 inactive healthy male volunteers at rest or immediately following two standardized activity tests on a bicycle ergometer for 30 minutes.

The author discovered that when exercise was performed at a constant load equivalent to 50% or 70% of maximal oxygen uptake, the platelet count (x109/l) increased significantly from rest to vigorous activity (Resting- 2185, 50% Vo2 Max- 247, 70% Vo2 Max- 2758, P0.001) [17]. Recent research examined the hematological response to acute and chronic exercise. While it is widely established that both acute and chronic exercise cause a variety of hematological alterations in humans [18]. Hematological parameters including RBCs and WBCs are associated with the physical performance of players. It is thought that an increase in the concentration of the RBCs indicates an improvement in aerobic performance [19]. In scientific studies, these reasons may explain why players’ blood values are inconsistent. Research into the long-term effects of physical activity on blood parameters for a variety of age groups and populations is needed to accurately conclude the impact of regular exercise on blood parameters. Many kinds of research in the literature have focused on the acute and short-term effects of physical activity on hematologic markers [20-22]. Therefore, the purpose of the study was to find out comparative analysis of mean platelet volume among female volleyball rugby players and yoga practitioners. We hypothesized that there is no difference between the MPV of participants from the two different games and one yoga practitioners. No difference exists between the MPV of players in the two games and one yoga practitioners.

Material and Methods

To accomplish the study’s purpose, the research assistant planned the entire process in terms of a study-appropriate research design.

Sample Size

Sample Selection: The population of the study is female players playing two games viz. Volleyball, Rugby and one yoga practitioners groups (conducted at the university level throughout India) with age groups ranging from 17 to 25 years in the sample. The sample size is 45, with 15 players chosen from each two game Volleyball, Rugby and one yoga practitioners group (Table 1).
Research Design

Static Group Comparison (SGCD) was used:
1: There is no difference between the MPV of participants from the three different games.
2: No difference exists between the MPV of players in the three games.

Sample Collection

The data was taken from all subjects during the All India Inter-University Training Camps for all of the games. Regarding the sample collection, proper approvals were obtained from the individual coaches. A qualified medical technician venepuncture the blood samples from the Median Cubital Vein. The venepuncture site was first disinfected with antiseptic-soaked cotton before applying a tourniquet around the biceps area of the upper arm. Each participant received a new IV syringe, and spent syringes were disposed of, away with extreme caution

Mean Platelet Volume (MPV)

MPV is a precise assessment of their size that is determined by hematological analyzers using the volume distribution of platelets during standard blood morphology testing. MPV is between 7.5 and 12.0 fl, whilst the proportion of big platelets should be between 0.2 and 5% of the total platelet population.[23].

Analytical tools utilized in the present study:
In this study, Haematological Analyzer was utilized as a tool to measure the mean concentration of different variables of the individuals. Hematology analyzers are frequently used in clinical and research settings to count and categorize blood cells to diagnose and monitor the illness. Basic analyzers provide a complete blood count (CBC) and a differential white blood cell (WBC) count in three parts. Sophisticated analyzers determine the shape of cells and are capable of detecting tiny cell populations to diagnose uncommon blood disorders. In this study, we have used. Horiba's Yumizen H500 analyzer is capable of determining the concentrations of 27 parameters, including full WBC. It is based on cytometry and cytochemistry concepts. The following ideas are implemented using the DHSS (Double Hydrodynamic Sequential System). The incubators that come with this analyzer are used to store blood samples from patients who are being monitored by the system. It is necessary to combine a particular serum with the blood that is present in these incubators to keep the blood analyzable for the entire one-hour length of the experiment.

Statistical Analysis

Quantification of data is the process of converting quantitative data into qualitative replies to facilitate calculation. Data are presented as mean, standard deviation (SD), standard error of the mean (SEM), and lowest and maximum scores were used to examine the data in tables. Normality was assessed and confirmed using the Kolmogorov-Smirnov test. Data were analysed using a 3 (groups: volleyball, rugby and yoga) The alpha level of significance was set at \(p \leq 0.05 \). All data analyses were performed using the statistical package for social sciences (SPSS) software was used to do the One-Way Analysis of variance.

Results

The goal of the study was to compare hematological parameters in different types of sports. This study will give some hematological information and help us figure out how different each game player is from the rest. Figure.1 demonstrates the MPV (Fl) as a function of total number of female player participants of three different games. It can be Visualized for the figure that MPV values of female players playing yoga are remarkably higher than that of Volleyball and Rugby, whereas Volleyball and Rugby are comparable.
Table 2

Descriptive statistics of MPV of female players for two different games and one yoga practitioners

<table>
<thead>
<tr>
<th>Statistical Data</th>
<th>Yoga</th>
<th>Volleyball</th>
<th>Rugby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>9.25</td>
<td>8.08</td>
<td>7.95</td>
</tr>
<tr>
<td>Standard Error</td>
<td>0.46</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Median</td>
<td>8.7</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.79</td>
<td>0.79</td>
<td>0.86</td>
</tr>
<tr>
<td>Sample Variance</td>
<td>3.20</td>
<td>0.63</td>
<td>0.75</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>4.17</td>
<td>3.96</td>
<td>3.04</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.08</td>
<td>0.50</td>
<td>0.38</td>
</tr>
<tr>
<td>Range</td>
<td>5.9</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Minimum</td>
<td>7.1</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Maximum</td>
<td>13</td>
<td>9.7</td>
<td>9.6</td>
</tr>
<tr>
<td>Sum</td>
<td>138.8</td>
<td>121.3</td>
<td>119.3</td>
</tr>
</tbody>
</table>

Table 2. Displays the statistical parameter carried out using MPV values determined from the haematological samples obtained from the female athletes participants of different games. It can be concluded that mean MPV value of the female yoga practitioners is the maximum as compared to the other two games i.e. volleyball and rugby.

Table 3. The mean and standard deviation of the MPV in female players participating in Yoga Volleyball and rugby are given in the table above. It presents a descriptive study of the data obtained on MPV in selected yoga practitioners, players from volleyball, and rugby. Their responses average between 7.9 and 9.2. This demonstrates their independence from one another. SD is also used to quantify variability, indicating that there is still a difference in the amount of MPV amongst players competing in different games.
Mean and Standard Deviation (SD) of MPV in the female sports of volleyball and rugby players and yoga practitioners.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Treatments</th>
<th>Yoga</th>
<th>Volleyball</th>
<th>Rugby</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>ΣX</td>
<td></td>
<td>138.8</td>
<td>121.3</td>
<td>119.3</td>
<td>379.4</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>9.2533</td>
<td>8.0867</td>
<td>7.9533</td>
<td>8.431</td>
</tr>
<tr>
<td>ΣX²</td>
<td></td>
<td>1329.26</td>
<td>989.87</td>
<td>959.39</td>
<td>3278.52</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td></td>
<td>1.7908</td>
<td>0.7999</td>
<td>0.8684</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4 summarises the findings of the statistically significant difference between the groups. The derived statistical value (5.0026) of the data collected is more than the significant level (0.05), indicating a substantial difference between and within players in terms of MPV level of the blood samples. The table demonstrates that MPV for players of two different games and one yoga practitioners is independent of one another. As a result, the null hypothesis is rejected in this study.

Table 5 shows the relationships within the group, such as the mean MPV of Yoga with Volleyball and rugby and the MPV of Volleyball with rugby. The statistics in the table indicates that there is a statistically significant difference between Yoga and Volleyball and between Yoga and Rugby. However, no difference in MPV was observed between Volleyball and Rugby at the indicated significance level. Because the null hypothesis is rejected in the situation of Yoga combined with Volleyball and rugby, it is accepted in the case of Volleyball and rugby.

Discussion

Nowadays, the hematological investigation of players was elucidated by routine blood morphology shed a light on players’ physical fitness in terms of platelet crit (PCT), MPV, platelet count (PLT), and (PDT). In the present study, a modern hematological analyzer provides information related
to large MPV (> 15 fl) and gigantic platelets of MPV > 20 fl. The current research has depicted that parameters of platelet may have to contributes to the diagnosis of an athlete’s physical conditions and can have an impact on prognostic value in some pathologies [24]. Currently, hematological studies on PLT and MPV are part of routine assessment and these are also recommendation made by by the International Committee for Standardization in Hematology (ICSH) [25]. MPV is a highly accurate and notable parameter that can be measured using haematological analyzers based on distribution of volume throughout routine blood morphology tests. MPV varies around 7.5 and 12.0 fl, while the proportion of giant platelets should be between 0.2 and 5.0 per cent [26]. In physiological conditions, the MPV is proportional to the platelet size, which is related to maintaining hemostasis and stable platelet mass [27]. This suggests that a rise in platelet production correlates with a decrease in average volume. Various disorders change this physiological proportion. Changes in PLT and MPV ratios might come from increased or atypical thrombocytopoiesis, growing wear, or the action of activating factors on blood platelets [28].

Furthermore, MPV correlates to platelet exercise and is therefore regarded as a platelet activity marker [29]. Platelets in the blood are not a relatively homogeneous group. Those with excessive MPV (>15 fl) tend to be younger and more responsive than those with average MPV. Their synthesis is related to the intense stimulation of mega karyocytes by cytokine, which also tends to enhance the ploidy of these cell lines and enable the release of larger platelets[30]. MPV could be an easy and inexpensive biomarker of the physical performance or fitness of the players. The present study portrays a comparative investigation of MPV of female athletes participating in different games viz. Yoga, Volleyball, and Rugby. The statistical analysis confirmed that the mean value of MPV of female participants of Yoga is more than that of Volleyball and Rugby. A one-way ANOVA test was carried out to find the association of fitness level of the female players participating in All-India inter-university tournaments. Keeping into consideration the data tabulated in Table.4 interprets the analysis into a narrower form so that significant relationships between and among the participants can be established. The significant value (p = 0.011) thus obtained from the ANOVA test corresponding to the F-statistical value (5.0026) is relatively lower than that of 0.05, which confirmed that the one or more statistical MPV data among the female player of three different games can be significant.

Consequently, the null hypothesis is rejected in this case. To determine the significant relationship between and among the MPV (hematological parameter) of the female players, post hoc Tukey HSD and Scheffé multiple comparison tests were implemented. Tukey’s HSD test indicates that there is a statistically significant difference between Yoga and Volleyball and between Yoga and Rugby. However, no difference in MPV was observed between Volleyball and Rugby at the indicated significance level. Because the null hypothesis is rejected in the case of Yoga combined with Volleyball and Rugby, the hypothesis is accepted in the case of Volleyball and Rugby. This implies that the female players participating in Yoga exhibit enhanced MPV levels, which depicts their high fitness and physical condition.

The objective of the research was to compare haematological markers across various sports. This research will provide haematological data and help us determine how different each gamer is from the others. The analysis displays the MPV (fl) is the result of the total number of female players participating in three games. It can be seen from the graph that the MPV levels of female yoga players are much greater than those of rugby and volleyball, but volleyball and rugby have similar MPV values.

Conclusion

This study aims to determine the MPV among yoga practitioners, volleyball, and rugby players. To accomplish the study’s objectives, data were gathered via questionnaires. Standard deviation and ANOVA were utilized to examine the effect of MPV on one another. ANOVA and post-Tukey’s HSD were employed to determine the difference to determine the outcome following the study’s objectives. The study's findings indicate a significant difference in the MPV of players from two distinct sports and yoga practitioners. However, when MPV of Volleyball and rugby players were compared, it was discovered that they were connected. In conclusion, MPV among players from different games are independent of one another and unaffected by one another. Variability in MPV was also observed across all sample sizes in the study.

Acknowledgement

The authors are grateful to all the female participants in the present study and thankful to their support for providing blood samples for haematological investigation.
Funding

No Funding sources

Conflict of Interest

The authors hereby declare that they don’t have any financial and personal conflict of interest.

References

Information about authors

Dilpreet Kaur
dilpreet.kaur2818@gmail.com
https://orcid.org/0000-0003-0517-1688
Department of Physical Education, Chandigarh University, Gharuan, 140413, Mohali, Punjab, India

Aravind Malik
arvindmalikkuk@gmail.com
https://orcid.org/0000-0002-4876-1488
Department of Physical Education, Kurukshetra University, Haryana, India

Karuppasamy Govindasamy
gowthamadnivog@gmail.com
https://orcid.org/0000-0002-3019-5545
Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India

Saran KS
sarank32@gmail.com
https://orcid.org/0000-0002-0145-4405
Department of Physical Education, C.K.G.Memorial Govt. College, Perambra, Calicut, Kerala, India

Mithin Anand
mithin.anand@gmail.com
https://orcid.org/0000-0002-8126-4299
Govt. College of Physical Education, East Hill, Calicut, Kerala, India

Chandrababu Suresh
sureshc@srmist.edu.in
https://orcid.org/0000-0002-2385-1831rg
Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
John Bosco Anitha
annie_felicia@yahoo.co.in
https://orcid.org/0000-0003-1288-1821
Department of Statistics and Computer Application, TamilNadu Physical Education and Sports University, Chennai, Tamil Nadu, India

Mou Pramanik
mouparamanik1991@gmail.com
https://orcid.org/0000-0002-7560-9019
Department of Yoga, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India

Imen Achouri
imenachourii2021@gmail.com
https://orcid.org/0000-0003-1051-6978
Department of Physical Education & Sports Science, Higher Institute of Sport and Physical Education, University of Sfax, Sfax, 3000, Tunisia

Hiba Boughanmi
hiba.boughanmi1@yahoo.com
https://orcid.org/0000-0002-6512-478X
Department of Physical Education & Sports Science, Higher Institute of Sport and Physical Education, University of Sfax, Sfax, 3000, Tunisia

Sigamani Jayasingh Albert Chandrasekar
jayasins@srmist.edu.in
https://orcid.org/0000-0001-7299-4647
Department of Physical Education and Sports Science, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur-603203., Tamilnadu., India

Інформація про авторів

Ділпріт Каур
dilpreet.kaur2818@gmail.com
https://orcid.org/0000-0003-0517-1688
Факультет фізичного виховання, Університет Чандігарха, Гаруан, 140413, Мохалі, Пенджаб, Індія

Аравінд Малік
arvindmalikkuk@gmail.com
https://orcid.org/0000-0002-4876-1488
Кафедра фізичного виховання, Університет Курукшетра, Хар'яна, Індія

Каруппасами Говіндасами
gowthamadnvog@gmail.com
https://orcid.org/0000-0002-3019-5545
Департамент фізичного виховання та спортивних наук, Науково-гуманітарний коледж, Інститут науки та технології SRM, Катанкулатур-603203, Тамілнаду, Індія

Саран КС
sarank32@gmail.com
https://orcid.org/0000-0002-0145-4405
Департамент фізичного виховання, С.К.Г.Меморіал Говт. Коледж, Перамбра, Калікут, Керала, Індія

Мітін Ананд
mithin.anand@gmail.com
https://orcid.org/0000-0002-8126-4299
Уряд Коледж фізичного виховання, Іст-Хілл, Калікут, Керала, Індія
Чандрабабу Суреш
sureshc@srmist.edu.in
https://orcid.org/0000-0002-2385-1831
Департамент фізичного виховання та спортивних наук, Науково-гуманітарний коледж, Інститут науки та технологій SRM, Каттанкулатур-603203, Тамілнаду, Індія

Йоан Боско Аніта
annie_felicia@yahoo.co.in
https://orcid.org/0000-0003-1288-1821
Департамент статистики та застосування комп’ютерів, Університет фізичного виховання та спорту Тамілнаду, Ченнаї, Таміл Наду, Індія

Моу Праманік
mouparamanik1991@gmail.com
https://orcid.org/0000-0002-7560-9019
Департамент йоги, Науково-гуманітарний коледж, Інститут науки і технологій SRM, Каттанкулатур, Тамілнаду, Індія

Імен Ачурі
imenachouri2021@gmail.com
https://orcid.org/0000-0003-1051-6978
Департамент фізичного виховання та спортивних наук, Вищий інститут спорту та фізичного виховання, Сфакський університет, Сфакс, 3000, Туніс

Хіба Буганмі
hiba.boughanmi1@yahoo.com
https://orcid.org/0000-0002-6512-478X
Департамент фізичного виховання та спортивних наук, Вищий інститут спорту та фізичного виховання, Сфакський університет, Сфакс, 3000, Туніс

Сігамані Джаясінг Альберт Чандрасекар
jayasins@srmist.edu.in
https://orcid.org/0000-0001-7299-4647
Департамент фізичного виховання та спортивних наук, Науково-гуманітарний коледж, Інститут науки та технологій SRM, Каттанкулатур-603203, Тамілнаду, Індія

Інформація об авторах

Дилприт Каур
dilpreet.kaur2818@gmail.com
https://orcid.org/0000-0003-0517-1688
Кафедра фізичного воспитания, Чандигархский университет, Гаруан, 140413, Мохали, Пенджаб, Індія

Аравинд Малик
arvindmalikkuk@gmail.com
https://orcid.org/0000-0002-4876-1488
Кафедра фізичного воспитания, Университет Курукшетра, Харьяна, Індія

Каруппасамі Говиндасами
gowthamadnivog@gmail.com
https://orcid.org/0000-0002-3019-5545
Департамент фізичного воспитания і спорта, Колледж естественных и гуманитарных наук, Институт науки и технологій SRM, Каттанкулатур-603203, Тамілнаду, Індія

Саран КС
sarank32@gmail.com
https://orcid.org/0000-0002-0145-4405
Департамент фізичного воспитания, Govt CKG Memorial. Колледж, Перамбра, Каликут, Керала, Індія
Митин Ананд
mithin.anand@gmail.com
https://orcid.org/0000-0002-8126-4299
Правительственный Колледж физического воспитания, Ист-Хилл, Каликут, Керала, Индия

Чандрабабу Суреш
Sureshc@srmist.edu.in
https://orcid.org/0000-0002-2385-1831
Департамент физического воспитания и спорта, Колледж естественных и гуманитарных наук, Институт науки и технологий SRM, Каттанкулатур-603203, Тамилнаду, Индия

Джон Боско Анита
annie_felicia@yahoo.co.in
https://orcid.org/0000-0003-1288-1821
Департамент статистики и компьютерных приложений, Университет физического воспитания и спорта Тамил Наду, Ченнаи, Тамил Наду, Индия

Моу Праманик
mouparamanik1991@gmail.com
https://orcid.org/0000-0002-7560-9019
Кафедра йоги, Колледж естественных и гуманитарных наук, Институт науки и технологий SRM, Каттанкулатур, Тамилнаду, Индия

Имен Ачури
imenachouri2021@gmail.com
https://orcid.org/0000-0003-1051-6978
Кафедра физического воспитания и спортивной науки, Высший институт спорта и физического воспитания, Университет Сфакса, Сфакс, 3000, Тунис

Хиба Боганми
hiba.boughanmi1@yahoo.com
https://orcid.org/0000-0002-6512-478X
Кафедра воспитания и спортивной науки, Высший институт спорта и физического воспитания, Университет Сфакса, Сфакс, 3000, Тунис физического

Сигамани Джаясинх Альберт Чандрасекар
jayasins@srmist.edu.in
https://orcid.org/0000-0001-7299-4647
Департамент физического воспитания и спорта, Колледж естественных и гуманитарных наук, Институт науки и технологий SRM, Каттанкулатур-603203, Тамилнаду, Индия

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)

Received: 2022-08-12 Accepted: 2022-08-21 Published: 2022-09-25